Sparse Functional PCA in High Dimensions

发布者:季洁发布时间:2019-10-23浏览次数:106


Speaker:Prof.Fang Yao,Peking University
Host:

陈钊,School of Data Science, Fudan University

Time:15:00-15:45,Oct24,2019
Location:Zibin N102, Fudan University
Abstract:

Thanks to technological advances, more functional data with high dimensionality are available in various fields such as neuroimaging analysis. Due to infinite dimensionality, functional principal component analysis has become an important tool for dimension reduction, which however is scarcely researched in high dimensions. We propose sparse principal component analysis for high dimensional functional data based on the relationship between orthonormal basis expansions and multivariate Kahunen-Loeve representations. Two sparsity regimes of interest are investigated with theoretical guarantees for the resulting estimators. Simulation and real data examples are provided to lend empirical support to the proposed method, which also performs well in subsequent analysis such as classification.

Bio:

姚方 博士,北京大学讲席教授(数学科学学院概率统计系,统计科学中心),国家高层次人才计划入选专家,数理统计学会(IMSFellow,美国统计学会(ASAFellow,国际统计学会(ISIElected Member2000年本科毕业于中国科技大学统计专业,2003获得加利福尼亚大学戴维斯分校统计学博士学位,曾于任职于多伦多大学统计科学系终身教授。主要研究方向包括无限维空间的函数型数据分析,具有高维或者流形结构的函数型数据的方法和理论以及在大型复杂数据中的应用。由于在函数型数据分析领域所做出的奠基性和开创性的贡献,2014年获得授予博士毕业15年内在加拿大做出突出贡献统计学者的 CRM-SSC奖。现担任Canadian Journal of Statistics的主编,至今担任9个国际统计学核心期刊编委,包括统计学顶级期刊Journal of the American Statistical AssociationAnnals of Statistics